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SUMMARY 

In this paper a new approach to  calculate transonic flows is developed. A set of full-potential-equivalent 
equations in the von Mises co-ordinate system is formulated under the irrotationality and isentropic 
assumptions. The emphasis is placed on supercritical flow, in which the treatment of embedded shock waves 
is crucial to get convergent solutions. Shock jump conditions are employed and shock point operators 
(SPOs) are constructed in the body-fitting streamline co-ordinate system. SPOs and a type-dependent 
difference scheme are applied to solve the ‘main’ equation for the ‘main’ variable, the streamline ordinate y. 
A number of ‘secondary’ equations are deduced for the corresponding ‘secondary’ variables. An optimal 
combination for the ‘secondary’ variable, its equation and related difference scheme is selected to  be the 
generalized density R, its linear equation and the Crank-Nicolson scheme. Numerical results show that the 
present approach gives good agreement with experimental data and other computational work for 
NACAOO12 and biconvex aerofoils in both subcritical and supercritical ranges. 
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1. INTRODUCTION 

Transonic flows are very often encountered in compressible flows, such as the flows around 
aerofoils, wings, through nozzle throats, cascade blades or past blunt bodies, etc. Thus, in the past 
two decades, transonic flow computation has been an upsurging topic for CFD workers in the 
aeronautical and applied mathematical communities. The history of its development may be 
broken down into three stages. 

TSD stage. In 1971 Murman and Cole’ first developed a type-dependent finite difference 
relaxation method and successfully solved the mixed-type transonic small-disturbance (TSD) 
equation. Subsequently Murman and Krupp’ and Murman3 improved the scheme, analysed the 
shock jump conditions and proposed the concept of shock point operator. After that there were 
many advances on the TSD equation (see e.g. References 4 and 5). 

FP stage. In 1974 Jameson6 extended Murman’s3 scheme and constructed his rotated differ- 
ence scheme to solve the full-potential (FP) equation in the transonic regime. Since then transonic 
full-potential calculations have been developed c~nsiderably.~-’~ 

Euler stage. In the early 1971)s Magnus and Yoshihara” solved the Euler equations in the 
transonic range. However, the computer time was too much for the method to be useful. After 
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1976 many other researchersi2-16 attempted to solve the steady Euler equations by seeking the 
time-asymptotic solution of the unsteady Euler equations. The approach is now referred to as 
a time-dependent technique. On the other hand, quite a few researchers attacked the Euler 
equations from another side, namely the streamfunction-vorticity formulation, and solved it as 
an alternative to the steady Euler  equation^.'^-^' 

In general, Euler solvers are more accurate, but more complicated and consume more 
computer time than the full-potential solvers. Therefore, in spite of the recent active efforts on 
Euler solvers, the full-potential calculations are still more attractive and widely used in practical 
transonic computation owing to their simplicity, efficiency and accuracy. The purpose of this 
paper is to report some transonic calculations at the FP stage. 

The von Mises transformation is a classical transformation in fluid mechanics. After the 
transformation the co-ordinates become body-fitting ones and it is easy to obtain streamlines, so 
this transformation is especially convenient for aerodynamic design problems. Moreover, some 
boundary conditions after the transformation are Dirichlet-type, which is believed to provide 
a faster convergence rate for an iterative solution process. 

Barron2’ connected Martin’s approach22 with the von Mises transformation and successfully 
solved the resulting elliptic equation to simulate the incompressible potential flow past an 
aerofoil. Later 0 3 1 ~ ~ 9 ~ ~  Barron’s method2’ was extended to compressible flow with some promis- 
ing results, especially for subcritical transonic flows. 

In this paper a new approach to calculate transonic flows is developed. Emphasis is placed on 
the supercritical case, in which the treatment of an embedded supersonic pocket, partly bounded 
by a shock wave, is crucial to get acceptable convergent solutions. 

Starting from the 2D steady Euler equations, through the introduction of the streamfunction 
and the von Mises transformation, a set of Euler-equivalent equations in the von Mises 
co-ordinate system is deduced. With the assumptions of irrotationality and the isentropic 
condition, a number of sets of full-potential-equivalent equations are formulated. 

In each set of equations the ‘main’ equation is a second-order, non-linear partial differential 
equation for a ‘main’ geometric variable, namely the streamline ordinate y, as a function of 
abscissa x and streamfunction $. This ‘main’ equation has Dirichlet boundary conditions (for the 
analysis problem) and is coupled with one of the following ‘secondary’ variables: density p ,  
generalized density R,  squared Mach number M 2 ,  x-velocity component u or reciprocal of 
density c. All these ‘secondary’ variables as functions of x and $ are solved using a corresponding 
‘secondary’ equation of the proper set. 

To get a numerical solution of the ‘main’ equation which is mathematically and physically 
consistent and well-classified, Murman and Cole’s type-dependent scheme’ is applied. To handle 
the embedded shock wave properly, a shock jump condition and a shock point operator (SPO) in 
von Mises co-ordinates are deduced using Murman’s3 ideas as a guide. 

The ‘secondary’ equations are either first-order partial differential equations or first-order 
ordinary differential equations for the corresponding ‘secondary’ variables. Various difference 
schemes have been tested, including explicit, implicit, Crank-Nicolson, type-dependent and 
type-dependent with SPO, to solve the ‘secondary’ equation. The optimal ‘secondary’ variable, 
equation and scheme are selected after some computer experimentation. Generalized density R,  
its linear equation and the Crank-Nicolson scheme are recommended as the optimai combina- 
tion. 

The computed results from the recommended combination are compared with experimental 
data and other computations. Some discussion, suggestion and concluding remarks are given at 
the end of this paper. 
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2. MATHEMATICAL FORMULATION 

2.1, Euler-equivalent equations 

The governing equations of 2D, steady, inviscid flows are the Euler equations 

y p u 2 + v 2  H = -  
y - 1  p + - r  

where p is the density, u and v are the velocity components in the x- and y-directions respectively, 
p is the pressure, H is the total enthalpy per unit mass and y is the ratio of specific heats. The 
dependent variables are normalized by the freestream density pm, speed qm and dynamic pressure 
head pm q’, . The independent variables x and y are scaled by a characteristic length, e.g. the chord 
length of the aerofoil. 

Introducing the streamfunction $ such that 

*Y = P U ,  *x= - P V  
and substituting (2) into (l), one gets 

H=--+- .  7 P *f+*,’ 
Y - - l P  2P 

The first component equation in (la), the continuity equation, is satisfied automatically by 
introduction of the streamfunction. Thus only three equations are left, with three unknowns 

and independent variable y and keep the 
role of independent variable x invariant, then we have in fact introduced the von Mises 
transformation: 

@, P and P .  
If we interchange the roles of dependent variable 

$=x, +=+(X,Y) or x = A  Y=Y(94 $1. (4) 

The Jacobian of the transformation is 

and the differential operators are 

a a  a a a +h- and -=t,hy- when $=x. --_ 
ax-a$ a+ aY a* 
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Acting (6 )  on y gives 

Thus the differential operators become 

Using (7) and (8) in (3) and simplifying, one gets 

H = - - + -  Y P l+Y:  
Y-1 P 2P2Y:’ 

where $=x. 
The third equation in (9a), H,=O, means that the total enthalpy H is invariant along 

a streamline. For a flow problem with uniform freestream the total enthalpy H is also invariant 
along a line other than a streamline in the freestream. Therefore H = constant throughout the flow 
field. This is the isoenergetic or homoenergetic assumption made by most Euler solver researchers. 
The constant can be evaluated at the freestream condition as 

1 1 1  
H = H , = - -  + -. y-1ML 2 

Finally, for 2D, steady, inviscid flows the governing Euler-equivalent equations in the von Mises 
co-ordinate system are 

( & + Y * P x  - (YxP)*=O, 

Equations (1 la) and ( l lb )  are x-momentum and y-momentum equations respectively and the 
energy equation is replaced by an algebraic equation ( l lc)  for p and p .  These three equations 
contain three unknowns, i.e. density p ,  pressure p and streamline ordinate y, as functions of 
abscissa x and streamfunction ~. 

2.2. Full-potential-equivalent equations 

The Euler-equivalent equations (11) are not easy to solve even though they are kept in 
conservative form and the energy equation has been simplified to an algebraic equation via the 
homoenergetic assumption. However, for many practical transonic problems the flow can be 
assumed irrotational and isentropic. In this case the irrotationality condition 

w = vx-u ,=o (12) 
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and the isentropic relation 

can be introduced. 
P = PY/Y MZ, 

Using the von Mises transformation, (12) becomes 

(Y* 4, - ( Y x  0 + 4, = 0. 
From (2) and (7), 

_ -  0 - _-- *x -yx  (note that @=x), 
*Y 

so the irrotationality condition becomes 

(YxY*4x-CC(1 +Y341,=0 
or 

929 

(13) 

(14) 

where puy* = 1 has been employed. 
Therefore a set of so-called full-potential-equivalent equations in the von Mises co-ordinate 

system is composed of the x-momentum equation (1 la), the y-momentum equation (1 lb), the 
isentropic relation (13) and the irrotationality condition (15). 

To simplify the formulation further, let us differentiate the isentropic relation (13) w.r.t. x and +: 

Substituting (16) into (1 la), the x-momentum equation becomes 
v + l  

-y,*+y* y 3 G - 1  --y y 2 p f i = o .  ( L1 ): x * M 2 p  

Similarly, the y-momentum equation (1 1 b) becomes 

The irrotationality condition (15) itself gives 

after expansion. 
Proper combinations of these three equations (17)-(19) produce a number of sets of equations 

which can be used to solve for y and p .  For example, solving for p x / p  and p * / p  from (17) and (18), 
plugging them into (19) and simplifying the resulting equation, one gets 

(204 ( Y t  - K )Yxx  - 2Yx Y,Yx* + (1 + Y: )Y** = 0 9  

where 

K = ~ ; / p ~ + l  

is referred to as the ‘compressibility parameter’. Eliminating the yx$-term from (17) and (18), one 
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gets 

and equation (17) itself can be rewritten as 

Substituting yx ,  in (21) and y x ,  in (22)  into (19) gives 

The 'main' equation (20) is a second-order non-linear partial differential equation for the 
streamline ordinate y ,  and it is coupled with another unknown, the density p. The type of this 
'main' equation is mixed depending on the local flow behaviour. In fact, the discriminant of 
equation (20)  is 

A = 4 y : ( M  - l), (24) 

where the squared local Mach number is 

Hence, if the local flow is supersonic, then M > 1 and A > 0, so that equation (20) must be 
hyperbolic. In contrast, if the local flow is subsonic, equation (20) is elliptic. In other words, the 
mathematical classification of equation (20) is consistent with the physical meaning of the flow. 
This significant property of the equation for y creates the possibility of applying the type- 
dependent difference scheme originally developed by Murman and Cole' for TSD problems. 

It should be mentioned that equation (20) was first obtained and classified by Naeem and 
B a r r ~ n . ~ ~  Dulikravich2' also got a similar equation to (20) with a different-scaled compressibility 
parameter. If K - 0 ,  then equation (20) reduces to the incompressible flow equation 

Y:Yxx-2YxYJ,YxJ, +(I  +YZ)YJ,J, =o. (26) 

This equation was obtained by Barron." Greywal126 deduced the same equation by a different 
method. 

In order to find a proper 'secondary' equation to solve for the 'secondary' variable p, any of the 
above three equations (21)-(23) can be chosen to construct a complete set of equations. However, 
to simplify the formulation, define the generalized density 

R =pY+' .  (27) 

( Y t -  K)Yxx-2YxYJ,YxJ,+(l +YZ)YJ,J, =o, (284 

Then equations (20)-(23) and (25) become 

where 
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Equation (29) can also be rewritten in the ‘conservative’ form 
2 

2 Y x x  (yXR), - (% R), = (7 + 2) M ,  2. Y J ,  (33) 

All the above ‘secondary’ equations (29)-(3 1) and (33) are first-order partial differential 
equations and can be solved for the ‘secondary’ variable R. However, only equation (29) seems to 
be the simplest one because it is linear. Thus why do we not choose it first to solve for R? 
Equation (29) can be solved (marched) from an initial data line other than its characteristic curve 
as long as y and its derivatives are known. In fact, the slope of the characteristics of equation (29) 
is 

At infinity, y,+O and y , - t l ,  so dtjldx-too. Thus both the left and right boundaries at infinity are 
characteristic curves and therefore cannot serve as initial data lines. Fortunately, the horizontal 
boundary at infinity meets the requirement of such an initial line. Hence we can march (29) to the 
aerofoil from the top boundary for the upper half-plane and from the bottom boundary for the 
lower half-plane. 

The boundary conditions for the ‘main’ equation (28) are very simple Dirichlet ones. For 
a symmetric aerofoil at zero incidence, 

y = f ( x )  on the aerofoil, ( 3 5 4  

Y = *  at infinity, (333) 

y = o  on the symmetry line, (354 
wheref(x) is the shape function of the aerofoil. For the ‘secondary’ equation (29), both initial and 
boundary conditions are 

R = 1 at infinity. (36) 

2.3. Alternative ‘secondary’ equations 

Apart from equations (29)-(31) and (33), a number of other ‘secondary’ equations can be found 
to solve for the corresponding ‘secondary’ variables. For example, if we eliminate the R$-term 
from (29) and (30), we can get a first-order ordinary differential equation for R: 

Similarly, eliminating the R,-term from (30) and (3 l), we have 

R, =- Y+l M: (- M: -- l + y :  1 ) - ’  (4) 1 + Y X  

2 R Y :  Y J ,  , 
It is interesting that (37) and (38) are astonishingly similar and symmetric. 
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At a shock wave it is better to replace (37) by the Rankine-Hugoniot relation 

where the superscripts '+' and '-' represent the downstream and upstream sides of the shock 
wave respectively. 

Equation (37) accompanied by (39) and equation (38) can be marched along the x- and 
$-directions step-by-step. 

Furthermore, if we differentiate (29) w.r.t. $ and (30) w.r.t. x and subtract them to eliminate 
third-order y-derivatives yxdrx and yXgx, we can get a second-order, but non-homogeneous, partial 
differential equation for R with the same differential operator as in the y-equation (28): 

We can see that both differential equation (40) and boundary condition (41) are non-linear. 

R to update the compressibility parameter K = M;/R in the 'main' equation (28). 

differential equation for M 2 :  

All the above R-equations (37), (38) and (40) can be used as 'secondary' equations to solve for 

On the other hand, using the R-M2 relation (32) in equation (37), we get a first-order ordinary 

However, at a shock wave equation (42) should be replaced by the Rankine-Hugoniot relation 

Accordingly, the compressibility parameter in equations (28) should be expressed as 

Superficially, this set of equations seems to be a good formulation, but it is too early to conclude 
its success before performing some computations. 

Next we will just list some of the other alternative sets of full-potential-equivalent equations for 
reference without giving any derivations. In each set the 'main' equation for y takes the form of 
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(28) and the compressibility K takes different forms in different sets: 

It can be pointed out that although these formulations are theoretically rational, the computer 
calculations may fail to give acceptable results. However, it is difficult to undergo the tedious and 
time-consuming work of running all possible combinations of these sets of equations with various 
schemes and relaxation parameters on a computer. Thus we have to select an optimal combina- 
tion of a ‘best’ secondary variable, a ‘best’ secondary equation and a ‘best’ difference scheme. 
Regardless, it is natural and logical to choose the simplest set of equations (28) and (29) to first 
attack the problem. 

3. NUMERICAL ALGORITHM 

3.1. Type-dependent scheme 

Because equation (28) is conveniently classified to hyperbolic or elliptic type depending on the 
local supersonic or subsonic flow properties, it is per‘missible to apply Murman and Cole’s 
type-dependent scheme to solve (28) for y as long as R is known. 
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Equation (28)  can be rewritten as 

A1 Y x x  + A2Yx* + A3Y** = 0, (494 

A ~ = ~ ; - K ,  K = M : / R ,  (49b) 

A2 = - 2YxY!h (494 

A 3 = 1 + y : .  (494 

(504 

where 

The type-dependent scheme reads 

(A1 EVA,+ (1 -v)VxI V x +  A2 Cv6.x + (1 -v)VxI 6, + A3 d**} yi, j = O ,  

where A ,  V and 6 are forward, backward and central difference operators and 

(50b) 
1 if local flow is subsonic, 
0 if local flow is supersonic, 

.={ 
is a switch parameter. 

Expanding (50a) and rearranging the terms, one gets 

Ayi,j-l+Byi,j+Cyi,j+l=RHS, i = 2 , 3 , .  . . , Imax- l ,  j=2 ,3 , . .  (514 

where 

1 - v  A x  p=- 
A*’ 

A = p 2 A 3  - ~ PA2 9 2 

1 - v  
2 + - PA, ( Y i -  1, j +  1 - Y i -  1, j -  1). 

From (35) the boundary conditions are 

Y ~ , ~ = I G ; .  if i =  1 or I,,, or j=J,,,. (52W 

The system of difference equations (51) with boundary conditions (52) has a tridiagonal 
coefficient matrix, so the successive line overrelaxation (SLOR) procedure can be used. Along 
a vertical i fixed line, system (51) is relaxed and then a sweep from left to right is made. A simple 
tridiagonal solver is available to use, but an iterative procedure has to be applied owing to the 
non-linearity of the equations. The stencils of the type-dependent schemes and boundary 
conditions are shown in Figure 1. 
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Re1 

3 = o  
Figure 1. Type-dependent scheme and boundary conditions for y-equation 

Re1 

3 = o  
Figure 1. Type-dependent scheme and boundary conditions for y-equation 

3.2. Crank-Nicolson scheme 

As mentioned earlier, after y ( x ,  +) has been solved from the ‘main’ equation and JJ,, yJ, and y,, 
have been properly differenced from y ,  the ‘secondary’ equation (29) can be solved for R ( x ,  +) by 
marching from the horizontal far-field boundary to the aerofoil. 

Equation (29) can be rewritten as 

where 

The Crank-Nicolson difference scheme is an implicit, second-order-accurate and uncondi- 
tionally stable difference scheme. Applying it to equation (53a) at point ( i , j + ) )  gives 

Evaluating each variable at level j + )  by the average on levelsj and j +  1, one gets - 
A ” R i - l , j + E R i , j + C R i + l , j = R H S ,  j=Jmax-l ,..., 3,2,1, i=2 ,3  , . . . ,  (54a) 

where 
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with 

The system of difference equations (54) can be solved line-by-line horizontally from the far-field 
boundary to the aerofoil using SLOR with a tridiagonal solver, but no iterative procedure is 
needed at this stage owing to its linearity. The difference scheme stencil and boundary conditions 
are shown in Figure 2. The following points should be emphasized. 

The coefficient matrix of the system (54) is diagonally dominant at most grid lines. This fact 
guarantees the numerical solution of the system. In fact, for most grid points off the 
aerofoil surface, yx x 0, yJ, x 1 and j3 can be chosen equal to or greater than unity, then 

(i) 

14 - (1'4 + If l )  = 4 8 1 ~ ~  I - 2 IB1 I 2 2 I YJ, I C2(1 + Y 3  - I Y X Y ,  I1 20. (55 )  

This inequality is easily satisfied for most points. Only for points close to the aerofoil or 
shock wave may the inequality be violated. We should pay particular attention to those 
situations. 

(ii) The marching process can only be carried out from the horizontal far-field boundary 
instead of the vertical far-field boundary or aerofoil surface, because R is easy to specify at 
infinity and, more importantly, the horizontal boundary is not a characteristic curve, while 
the left and right far-field boundaries are such curves. 

Relax 

Figure 2. Crank-Nicolson scheme and boundary conditions for R-equation 
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(iii) The right-hand-side term in equation (53a) includes y,,, which must be type-dependent 
differenced with SPOs (explained in the next subsection) to keep consistent with the case in 
the y-equation. However, for R, and y,, whether type-dependent differencing with SPOs is 
needed or not can be determined only after the numerical tests. A number of alternative 
schemes have been tested, including explicit, implicit, first-order and second-order type- 
dependent with and without SPOs, etc. It was found that the Crank-Nicolson scheme is 
the optimal one. 

After R has been solved, the squared Mach number is calculated from (32) and the pressure 
coefficient is calculated from 

n 

3.3. Shock wave treatment 

After some numerical tests it was found that the type-dependent scheme is effective to achieve 
good solutions for the subcritical case of transonic flows and for the supercritical case with very 
weak shock waves. However, for a supercritical transonic flow with moderate or strong shock 
wave the iterative procedure either fails to converge or is forced to be stopped owing to inaccurate 
intermediate values of the unknowns y and R. 

In the early work of Murman and Cole' the shock jump conditions are automatically 
contained in their TSD formulation in the integral form. The sonic line and shock waves evolve 
naturally during the course of iteration. The shock is captured as part of the continuous solution 
and is smeared out over several grid points. Thus no special shock wave treatment is needed for 
their computation. Murman, in his later paper,' proposed the concept of shock point operator 
(SPO) for the TSD equations, but his SPO cannot be applied directly here. However, his analysis 
of the shock structure provides a useful hint for modification of the FP-equivalent equations. 
Next let us analyse our shock jump conditions, propose an SPO and apply it to solve the problem 
of supercritical FP transonic flow. 

Shock jump conditions. Suppose an oblique shock with velocity V makes an angle j with the 
x-axis, u and u are Cartesian components of V, V ,  and K are normal and tangential components 
of V and o! is the angle of V with the x-axis. Superscripts '-' and '+' represent upstream and 
downstream of the shock. Then (Figure 3) the tangential shock wave relation V; = V: gives 

(u+  - u - )  sinp+(u+ - u - )  cos j=O 

or 

The normal shock wave relation p -  V; = p +  V.' gives 

or 

p + u +  - p - u -  dx 
= cot p = ( G)s 5 

p+u+ - p - v -  

where (dxldy), = cot p is the slope of the shock wave. Equations (57) and (58)  can be expressed in 
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X V 

u*=v+coeJ 
V*=v+aino(* 

Figure 3. Shock jump conditions 

the compact form 

where [ - I  represents the jump across the shock. Considering puy,=1 and u=y,u,  we get the 
oblique shock jump conditions 

For a normal shock, i.e. a shock whose plane is perpendicular to the x-axis, (dx/dy),=O. The 
shock jump conditions are then reduced to 

[,:]=o, [+o. 
PY* 

Finally, we get the normal shock jump conditions of the simplest form [;I=. CY* l  =o. 

Shock point operator (SPO) .  The shock wave appearing in many transonic flow regions is 
approximately normal and we assume that it is an infinitely thin discontinuous surface located at 
point (i-j,j) and perpendicular to the x-axis. From the previous paragraph, only yx /p  and y* are 
continuous across this discontinuity, but y,, yx,, y,*, p, R,  M 2 ,  etc. are not (see Figure 4). The 
normal shock jump conditions (60) are 

(61) 
- P +  

y: = y, Y .  
P 

Y: = Y i ?  

The Rankine-Hugoniot relation for a normal shock is 
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shock 
i-1/2 

Figure 4. Shock point operator 

The squared Mach number at ( i - i , j ) -  can be evaluated by extrapolation from the two upstream 
points as 

M;- l i 2 , j  = 3 M?- I , ,  - $ M?- z , j .  (63) 

Y: = Y $ t  Y: = a j Y ;  3 (644 

Thus the shock jump conditions (61) can be rewritten as 

where 

is the density jump factor on the j th  streamline. Furthermore, we can construct a difference 
scheme for yx at a shock point i = i s ,  i.e. the grid point just behind the shock: 

( y x ) i , j = + C ( ~ x ) i + i / 2 .  j + ( ~ x ) : - 1 / z , j I  

= + [ ( y x ) i + 1 / 2 .  j + a j ( ~ x ) i - 1 / Z ,  j I  

1 
2Ax 

-- - ( Y i + l , j - Y i ,  j + u j Y i - I ,  j - a j ~ i - 2 ,  j ) ,  

where second-order difference formulae 

1 1 
Ax Ax ( ~ x ) i + 1 / 2 , j = - ( y i + l , j - ~ i , j )  and ( ~ x ) ~ - l / 2 , j = - ( ~ i - ~ , j - ~ i - 2 , j )  

have been used. Similarly, for i = i s ,  

1 
Ax 

(y xx ). 1 . J  .=-( 2 Y, . + 1 .  j - y i ,  j - a j Y i -  1 .  j + u j y i -  2, j ) ,  

( Y i + l ,  j +  1 - Y i + l ,  j - 1  + Y i ,  j + l  -Yi, j - 1  - 3 y i - I ,  j + 1 + 3 y i - l ,  j - 1  ( y  ). .=- 1 
x J I 1 ' J  4AxAll/ 

+ Yi - 2 ,  j + 1 - Yi - 2 .  j - 1 1. 
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Equations (65)-(67) define so-called shock point operators in von Mises co-ordinates. Owing to 
the special treatment of the grid point at a shock wave, we have to revise the type-dependent 
scheme (51) for the y-equation and (54) for the R-equation. 

Type-dependent scheme with SPOs. Based on the SPOs derived above, the system of difference 
equations corresponding to the ‘main’ equation (49a) for y is still of the same form as (5la), i.e. 

Ayi, j- 1 +BYi, j +CYi, j+  1 =RHS, 

but the coefficients and right-hand-side term are revised as 

if i # is, 
if i = i s ,  

1-3v if i # i s ,  
if i = i s ,  

+3yi-1,,-1 +yi-z,j+l -yi-z,j-l) if i = i , .  

For the ‘secondary’ equation (53a) the corresponding difference equation, its coefficients and its 
RHS term take the same form as in equations (54a)-(54h), but the second derivative yxx in 
equation (54h) should be approximated by a type-dependent difference scheme with shock point 
operator 

l - v  
Ax2 - (yi+ 1, j -2yi, j + yi- 1, j )+ - (yi, j -2yi- 1, j + yi- 2, j )  if i+is, 

(69) (Yxx) i j=  [f: -(yi+l, j-yi, j -ajYi- 1, j +a j~ i -2 .  j) if i=i, ,  

where the switch parameter v is defined in equation (50b) and the density jump factor aj  is given 
by equation (64b). 

Criterion ofclassifying points. In order to determine the local flow type at grid point (i,j), we 
have to check the flow property at two adjacent points, namely the current point (i,j) and the 
upstream point (i- 1, j). The criteria are shown in Table I. In computational practice the sonic 
point doe$ not need to be distinguished because there is no jump across it, but the shock point 
must be identified carefully, and this is a key step to get a convergent solution. 
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Table I 

Mi2- 1. j M:j Local flow type at (i, j )  

<1 
< 1  
> 1  
> 1  

<1 Subsonic point 
> 1  Sonic point 
>1 Supersonic point 
<1 Shock point 

4. CLUSTERING TRANSFORMATION 

In order to improve the accuracy by increasing the number of grid points on the surface of the 
aerofoil without consuming too much computer time, some kind of clustering (stretching) 
transformation can be applied to pack mesh points for larger-gradient regions and spread out 
mesh points for smaller-gradient regions. 

Jones’ algebraic stretching transformation5 is a simple and effective one: 

x = a  e-br2tanr ,  (704 

$ = d  tanr]. (70b) 

y =  Y+*. (71) 

A new variable Y can be introduced by 

Substituting (70) and (71) into (28), we get 

and the squared Mach number is 

The normal shock jump conditions (60) become 

[ q o ,  P X S  [$+1]=0. 

Because xr  and 
(60), i.e. 

are continuous everywhere, the shock jump conditions have the same form as 

[:I=. [ r,] =o. (74) 
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Similarly, we get SPOs for clustered co-ordinates: 

where 
y+ 9 = y -  'I' Y; = a j  Y i ,  

is the density jump factor on the j t h  streamline and 

1 
(q)i, j =- (&+  1, j - X, j +aj  X- 1 ,  j -aj K - 2 ,  j ) ,  

(q<)i, j = y  ( & + I ,  j - X, j - a j  & - 1 , j  +aj X - 2 ,  j ) ,  

( q q ) i ,  j =- ( X + l , j + l - K + ~ . j - l  + & , j + 1 - & , j - 1 - 3 X - 1 , j + l  

(764 

(76b) 

2A5 

A5 

4A5Avl 

+ 3 & - 1 , j - 1  + & - 2 , j + l  -&-z . j - i ) .  (764 

1 

1 

Using the type-dependent scheme with SPOs on equation (72a), we get the following system of 

A&, j - ,+BYi , j+CX, j+ l  =RHS, i = 2 , 3 , .  . . , Imax- l r  J = 2 , 3 , .  . . , J m a x - 1 ,  (77a) 

difference equations with tridiagonal coefficient matrix: 

where 
A=P2A3 -4 PAtA,  - 

1 - 3 ~  if i # i s ,  
if i = is, B =  -2P2A3 + { - } Al  + { Y - " }  A tA4  { 

if i # i s ,  
if i=is ,  (774  
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The boundary conditions are Dirichlet-type: 

y.  = ft i)  if iLE < i < iTE, 
if i < i L E  or i > i T E ,  1 ,  1 

Y.  . = O  i f j=Jmax or i = l  or i= lmax.  
1 . J  

Applying Jones’ transformation to equation (29), we get 

where 

B3=(y+1)Mi$: (%,-: q). (78d) 

The Crank-Nicolson scheme for equation (78a) produces the same form of difference equation, 
its coefficients and its RHS term as in equations (54a)-(54e), but the B’s take a different form, i.e. 

B1 = f  { C & ( Y , + + q ) ’ I i , j  + C Y r ( Y , + 1 1 / , ) 2 1 i , j + 1 ) ,  (794 

~2 = -+ { C Y ,  + $q)(Yi + x ; ) I i ,  j + [(q + +q)(Y$ + x : ) I i ,  j +  1 1 ,  (79b) 

and the <-derivatives 5 and q, in equation (79c) should be approximated by a type-dependent 
difference scheme with SPOs 

5. RESULTS AND DISCUSSION 

The method developed here is used to calculate the transonic flows past symmetric aerofoils at 
zero angle of attack. Both subcritical and supercritical Mach numbers are considered. For 
unstretched co-ordinates ( x ,  $) a 65 x 33 uniform mesh covers the domain - 2 < x Q 3,O <I) < 2.5 
and the aerofoil is located between 0 and 1 with 13 grid points on the surface. For stretched 
co-ordinates (5 ,  v ] )  a 65 x 33 uniform grid covers the computational domain - 1.54 < 5 ,< 1.54, 
0 < v]  < 1.54, corresponding to - 7.04 < x Q 7.04, 0 d I) Q 19.47. The aerofoil is located between 
-0.5 and 0 5  and has 25 grid points on it (see Figure 5).  

Most of the computations have been carried out on the y-R set of equations (28) and (29) for 
( x ,  $) co-ordinates and on the Y-R set of equations (72) and (78) for (5 ,  q)  co-ordinates. Other sets 



944 C.-F. AN AND R. M. BARRON 

of equations were only used for comparison with the y-R set. The relaxation parameters were 
taken as o= 1.7-14 for the subcritical case and w=0.8-0.9 for the supercritical case. 

Figure 6 shows the comparison of the calculated C,-distribution of a 6% biconvex aerofoil at 
M ,  = 0.909 with experimental data.27 The type-dependent difference scheme with SPO is used for 
the y-equation. We can see that the shock wave is very weak and accurately captured by the 
present scheme. 

Figures 7-9 are comparisons of calculated NACA0012 C,-distributions in (x, $) co-ordinates 
with experimental data at NAE2* for M, =0.490 and at ONERA” for M, =0.756 and 04303. In 

2 . 0 0  4’ .  00 6’. 0 0  B’. 00 

Figure 5. Grid system in (x, $) co-ordinates after Jones’ stretching transformation; x=ae-b51 tan(, IJ =dtan q. 
- 1.54 g 5 < 1.54, 0g 7 < 154, a =0.9, b = 0.6, d =0.6. -7.04g x g 7.04, O<$ g 1947, xLt = -0.5,  xTE =0.5 

0 
0 
- 

0 
ln 

a. 
0 

X 

Figure 6. Comparison of pressure coefficient distribution with experimental data, 6% biconvex, M, =0.909, y-R set: 
A, present; --, experimental data at NASA” 
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Figure 7. Comparison of pressure coefficient distribution with experimental data, NACA0012, M ,  =0.490, y-R set: 
&, present; &, experimental data at NAEZ8 
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Figure 8. Comparison of pressure coefficient distribution with experimental data, NACA0012, M ,  =0.756, y-R set: 
A, present; &, experimental data at ONERAZ8 

order to show the improvement in accuracy using stretched co-ordinates, Figures 10 and 1 1  are 
comparisons of calculated C,-distributions of NACA0012 with ONERA28 for M, = 0.803 and 
NAE28 for M, =0.817. From these plots we can see that for both subcritical and supercritical 
cases the present approach gives good agreement with available experiments. For supercritical 
flow the shock wave location and strength are well predicted, but the shock is smeared out over 
two or three grid points sometimes and slight oscillation occurs after the shock wave. 

Figure 12 shows the effect of the shock point operator in the y-equation on shock wave 
capturing for NACAOO12 at M, =0.803. Obviously, the type-dependent (TD) scheme with no 
SPO cannot correctly capture the shock wave and the C,-distribution is incorrect, while the TD 
scheme with SPO is able to do so. Hence the SPO is a crucial tool to capture shock waves 
automatically. 
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Figure 9. Comparison of pressure coefficient distribution with experimental data, NACA0012, M ,  =0.803, y-R set: 
&, present, uniform grid; -, experimental data at ONERA" 

00 
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Figure 10. Comparison of pressure coefficient distribution with experimental data, NACA0012, M ,  =0.803, Y-R set: 
A, present, clustered grid; +-, experimental data at ONERA28 

Figures 13-16 show the C,-distributions for NACA0012 using various sets of equations: y-R 
with R ,  given by (37), y-R with L ( y ) = O  and L(R)=G,  y - M 2  and y-u-p. It was found that all the 
sets are capable of producing good results for subcritical flows. However, some difficulties are 
encountered in the computation for supercritical flows. Therefore the y-R set of equations (28) 
and (29) are recommended as an optimal set. 

Figure 17 illustrates the convergence history of the R-equation. The horizontal axis gives the 
total number of iterations for y and the vertical axis is the logarithm of the error of R between two 
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Figure 1 1 .  Comparison of pressure coefficient distribution with experimental data, NACA0012, M ,  =0.817, Y-R set: 
d, present, clustered grid; A, experimental data at NAE2' 
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Figure 12. Effect of shock point operator (SPO) for yxx, yxJ, on shock strength and location, NACA0012, M ,  =0.803, y-R 
set: A, present; &, experimental data at ONERA;28 -, present without SPO 

successive global iterations. For subcritical Mach number the convergence rate is fast and the 
maximum error decreases steeply, but for supercritical flow the convergence rate is much slower 
and the maximum error decreases slowly with violent oscillation. 

Figure 18 indicates the effect of artificial density methods on the capturing of shock waves. 
Central differencing is used for both the y-  and R-equations and a conventional artificial density 
I?=R-pR,Ax is added. The result shows that the C,-distribution is totally incorrect and the 
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Figure 13. Comparison of pressure coefficient distribution with experimental data, NACA0012, M, =0.502, y-R set, R ,  
given by (37): A, present; &, experimental data at ONERAZ8 
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Figure 15. Comparison of pressure coefficient distribution with experimental data, NACA0012, M ,  =0.693, y -M2 set, 
( M * ) x  given by (42): A, present; 4, experimental data at NAE28 
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Figure 16. Comparison of pressure coefficient distribution with experimental data, NACA0012, M ,  =0.693, y-u-p set: 
+, present; &, experimental data at NAEZ8 

0 
0 

Figure 17. Convergence history for NACA0012: -, M ,  =0.703; M,=0.803; A, M,=0.835 

shock wave is not captured. Hence it seems that the widely used artificial density technique in 
velocity potential computation is not easily extendable for our formulation. 

Figure 19 is the comparison of the C,-distribution for NACA0012 at M,=0.803 for two 
difference schemes using the R-equation (29). One of them is the Crank-Nicolson scheme with 
T D  and SPO for the y,,-term in the R-equation. The other is TD with SPO for all y,,-, y,- and 
&terms in the R-equation. It is clear that in the latter case the shock wave position and strength 
are highly oscillatory, while the former scheme gives accurate shock position and strength and 
less oscillation. Hence the first scheme is recommended. 
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Figure 18. Inability of artificial density method to capture shock waves, NACA0012, M,=0.803, y-R-E set: 
A, artificial density method with central differencing; ---8--, experimental data at ONERA” 
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Figure 19. Effect of type-dependent (TD) differencing with shock point operator (SPO) for y,, R , ,  NACA0012, 
M ,  =0.803, y-R set: A, present; +, experimental data at ONERA;” +, present with y,, R,, 

TD + SPO 
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6. CONCLUDING REMARKS 

1. The newly developed approach based on the full-potential-equivalent equations in von 
Mises co-ordinates, type-dependent scheme with shock point operator and successive line 
overrelation procedure is able to obtain accurate numerical solutions for both subcritical 
and supercritical transonic flows. 

2. Embedded shock waves in supercritical flows can be captured automatically in the process 
of iteration and are smeared out over two or three grid points. 

3. The full-potential-equivalent equations consist of a ‘main’ equation for the corresponding 
‘main’ variable, which is the streamline ordinate y, and a ‘secondary’ equation for one of the 
following ‘secondary’ variables: density p, generalized density R, squared Mach number M2, 
x-velocity component u, etc. 

4. The type-dependent difference scheme with shock point operator (SPO) is effective to solve 
the ‘main’ equation for y and the SPO is crucial to capture shock waves, especially for 
moderate or strong ones. 

5. Among various ‘secondary’ variables, their equations and a number of difference schemes, 
the generalized density R, its linear equation (29) and the Crank-Nicolson scheme are 
selected as an optimal combination to accompany the ‘main’ variable y and its equation. 

6. The method developed here accurately captures shock waves in supercritical transonic flow 
without employing artificial dissipation schemes. This is advantageous, since the use of 
artificial density or viscosity requires a certain amount of tuning of the code, i.e. a number of 
parameters must be adjusted to achieve converged solutions. The present method, in which 
the only adjustable quantities are the relaxation parameters, is very robust and relatively 
easier to use. 
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